
Mastering Python:
From Basics to
Advanced Projects

Runner Code
Presented By

runner-code.com

Table of
Contents

Introduction to Python1.
Variables, Data Types, and Operators2.
Control Statements3.
Functions and Recursion4.
Lists, Tuples, and Dictionaries5.
Object-Oriented Programming (OOP)6.
File Handling7.
Libraries and Modules8.
Advanced Concepts9.
Advanced Projects10.

Chapter 1:
Introduction
to Python

Python is a high-level, interpreted, and
general-purpose programming language that
emphasizes readability, simplicity, and
versatility. Created by Guido van Rossum and
first released in 1991, Python has become one
of the most popular and widely used languages
in the world due to its easy-to-understand
syntax and vast ecosystem.

Key Features of Python:
Readable and Clean Syntax:1.

Python’s syntax closely resembles human language, which
makes it easier for developers to read and write code. It
emphasizes indentation, reducing the need for braces or
semicolons.

Interpreted Language:2.
Python is an interpreted language, meaning code is executed
line by line, which simplifies debugging and testing.

Dynamically Typed:3.
Python does not require explicit variable declarations, and
types are inferred at runtime, which leads to faster
development.

Object-Oriented and Functional Programming:4.
Python supports multiple programming paradigms, including
object-oriented, imperative, and functional programming,
allowing flexibility in how you structure your code.

Extensive Standard Library:5.
Python comes with a vast standard library for tasks like
file handling, data manipulation, web development, and
scientific computation.

Cross-Platform:6.
Python can run on virtually any platform, including Windows,
macOS, Linux, and others, making it highly portable.

Third-Party Libraries and Frameworks:7.
Python has an extensive ecosystem of third-party libraries
and frameworks for various applications, such as Django and
Flask for web development, TensorFlow and PyTorch for
machine learning, and Pandas and NumPy for data analysis.

Community Support:8.
Python has a vast and active global community, making it
easy to find resources, tutorials, and solutions to
problems.

Why Learn
Python?

Data Science & Machine Learning: Python is the
go-to language for data scientists and machine
learning engineers due to powerful libraries
like Pandas, NumPy, Matplotlib, and scikit-
learn.
Web Development: Python is widely used for
developing websites and web applications,
thanks to frameworks like Django and Flask.
Automation & Scripting: Python is excellent for
automating repetitive tasks and building small
scripts for system administration.
Scientific Computing: With libraries like
SciPy, Matplotlib, and SymPy, Python is heavily
used in scientific and research-based
applications.
Versatility: Python’s simplicity and power
allow it to be used in diverse fields such as
game development, network programming, desktop
applications, and more.

Python is known for its ability to handle a
wide range of applications, from small
scripts to large-scale systems, and is an
excellent choice for beginners while also
being powerful enough for professional
software development. Whether you’re into web
development, automation, or data science,
Python’s simplicity and rich ecosystem make
it a top choice for developers.

Setting Up the
Development
Environment

Download and install Python from the
official website.

1.

Install an IDE or text editor like PyCharm,
VS Code, or Jupyter Notebook.

2.

Write and run your first program.3.

https://www.python.org/

Your First
Python Program

Code Example:

print("Welcome to Python Programming!") Explanation:
print(): Outputs text to the console.

Chapter 2: Variables, Data Types, and Operators

age = 25
height = 5.9
grade = 'A'
is_student = True
name = "John"

usage = int(input("Enter your age: "))
print(f"You entered: {age}")

Variables and Data Types
Data Types: int,
float, str, bool,
list, tuple, dict.

Example:

Input and Output Operations
Code Example:

Operators

a = 10
b = 20
print(a + b) # Outputs 30
print(a > b) # Outputs False

Arithmetic Operators: +, -, *,
/, %
Relational Operators: ==, !=,
<, >, <=, >=
Logical Operators: and, or, not

Example:

Chapter 3:
Control
Statements

if age >= 18:
 print("You are an adult.")
else:
 print("You are a minor.")
}

if-else Example:

Elif Example:

grade = 'A'
if grade == 'A':
 print("Excellent!")
elif grade == 'B':
 print("Good!")
else:
 print("Try harder!")

For Loop
Example:

for i in range(5):
 print(i)

While Loop
Example:

i = 0
while i < 5:
 print(i)
 i += 1

Chapter 4:
Functions and
Recursion

def add(a, b):
 return a + b

print(add(10, 20)) # Outputs 30

Defining Functions
Example:

Recursive Functions
Example:

def factorial(n):
 if n == 0:
 return 1
 return n * factorial(n - 1)

Chapter 5:
Lists, Tuples,
and Dictionaries

arr = [1, 2, 3, 4, 5]
for num in arr:
 print(num)

Lists
Example:

Tuples
Example:

tup = (1, 2, 3)
print(tup[0])

Dictionaries
Example:

dict = {"name": "John", "age": 25}
print(dict["name"])

Chapter 6:
Object-Oriented
Programming (OOP)

class Car:
 def __init__(self, brand):
 self.brand = brand

 def honk(self):
 print("Beep! Beep!")

my_car = Car("Toyota")
my_car.honk()

Classes and Objects
Example:

Chapter 7:
File Handling

with open("example.txt", "w") as file:
 file.write("Hello, File!")

with open("example.txt", "r") as file:
 content = file.read()
 print(content)

File Operations
Example:

Chapter 8:
Libraries and
Modules

import math

print(math.sqrt(16))

Using Libraries
Example:

Chapter 9:
Advanced
Concepts

import asyncio

async def fetch_data():
 await asyncio.sleep(1)
 print("Data fetched.")

asyncio.run(fetch_data())

Asynchronous Programming
Example:

Chapter 10: Advanced Projects
Library Management System

Code
Implementation

CodeImplementation

Output

Thank You
runner-code.com

info@runner-code.com

